PLC Controller Input Lines

Thursday, January 28, 2010

Different sensors, keys, switches and other elements that can change status of a joined bit at PLC input can be hooked up to the PLC controller inputs. In order to realize a change, we need a voltage source to incite an input. The simplest possible input would be a common key.


As CPM1A PLC has a source of direct voltage of 24V, the same source can be used to incite input (problem with this source is its maximum current which it can give continually and which in our case amounts to 0.2A). Since inputs to a PLC are not big consumers (unlike some sensor where a stronger external supply must be used) it is possible to take advantage of the existing source of direct supply to incite all six keys.

How PLC Controller Works

Basis of a PLC function is continual scanning of a program. Under scanning we mean running through all conditions within a guaranteed period. Scanning process has three basic steps:

Step1.
Testing input status. First, a PLC checks each of the inputs with intention to see which one of them has status ON or OFF. In other words, it checks whether a sensor, or a switch etc. connected with an input is activated or not. Information that processor thus obtains through this step is stored in memory in order to be used in the following step.

Step2.
Program execution. Here a PLC executes a program, instruction by instruction. Based on a program and based on the status of that input as obtained in the preceding step, an appropriate action is taken. This reaction can be defined as activation of a certain output, or results can be put off and stored in memory to be retrieved later in the following step.

Step3.
Checkup and correction of output status. Finally, a PLC checks up output status and adjusts it as needed. Change is performed based on the input status that had been read during the first step, and based on the results of program execution in step two. Following the execution of step 3 PLC returns to the beginning of this cycle and continually repeats these steps. Scanning time is defined by the time needed to perform these three steps, and sometimes it is an important program feature.


PLC Controller Output Lines

Aside from transistor outputs in PNP and NPN connections, PLC can also have relays as outputs. Existence of relays as outputs makes it easier to connect with external devices. Model CPM1A contains exactly these relays as outputs. There a 4 relays whose functional contacts are taken out on a PLC controller housing in the form of screw terminals. This the really of the figure for the PLC.




With activation of phototransistor, relay comes under voltage and activates a contact between points A and B. Contacts A and B can in our case be either in connection or interrupted. What state these contacts are in is determined by a CPU through appropriate bits in memory location IR010. One example of relay status is shown in a picture below. A true state of devices attached to these relays is displayed.

Introduction PLC OMRON

Monday, January 25, 2010

It is a huge company which has high quality and by our standards inexpensive controllers. Today we can say almost with surety that PLC controllers by manufacturers round the world are excellent devices, and altogether similar. Nevertheless, for specific application we need to know specific information about a PLC controller being used.


Therefore, the choice fell on OMRON companies and it is PLC of micro class CPM1A. Adjective "micro" itself implies the smallest models from the viewpoint of a number of attached lines or possible options. Still, this PLC controller is ideal for the purposes of this book, and that is to introduce a PLC controller philosophy to its readers.


Output Lines

Sunday, January 24, 2010

PLC controller output lines usually can be:
-transistors in PNP connection
-transistors in NPN connection
-relays

The following two pictures display a realistic way how a PLC manages external devices. It ought to be noted that a main difference between these two pictures is a position of "output load device". By "output load device" we mean some relay, signalization light or similar.
How something is connected with a PLC output depends on the element being connected. In short, it depends on whether this element of output load device is activated by a positive supply pole or a negative supply pole.


Input Lines

Explanation for the PLC controller input and output line has up to now been given only theoretically. In order to apply this knowledge, we need to make it a little more specific. Example can be connection of external device such as proximity sensor. Sensor outputs can be different depending on a sensor itself and also on a particular application.


This pictures display some examples of sensor outputs and their connection with a PLC controller. Sensor output actually marks the size of a signal given by a sensor at its output when this sensor is active. In one case this is +V (supply voltage, usually 12 or 24V) and in other case a GND (0V). Another thing worth mentioning is that sinking-sourcing and sourcing - sinking pairing is always used, and not sourcing-sourcing or sinking-sinking pairing.


If we were to make type of connection more specific, we'd get combinations as in following pictures (for more specific connection schemas we need to know the exact sensor model and a PLC controller model).

Input Adjustment Interface

Monday, January 18, 2010

Adjustment interface also called an interface is placed between input lines and a CPU unit. The purpose of adjustment interface to protect a CPU from disproportionate signals from an outside world. Input adjustment module turns a level of real logic to a level that suits CPU unit (ex. input from a sensor which works on 24 VDC must be converted to a signal of 5 VDC in order for a CPU to be able to process it). This is typically done through opto-isolation, and this function you can view in the following picture.


Opto-isolation means that there is no electrical connection between external world and CPU unit. They are "optically" separated, or in other words, signal is transmitted through light. The way this works is simple. External device brings a signal which turns LED on, whose light in turn incites photo transistor which in turn starts conducting, and a CPU sees this as logic zero (supply between collector and transmitter falls under 1V). When input signal stops LED diode turns off, transistor stops conducting, collector voltage increases, and CPU receives logic 1 as information.

Sinking-Sourcing Concept

PLC has input and output lines through which it is connected to a system it directs. Input can be keys, switches, sensors while outputs are led to different devices from simple signalization lights to complex communication modules.

‘This is a very important part of the story about PLC controllers because it directly influences what can be connected and how it can be connected to controller inputs or outputs. Two terms most frequently mentioned when discussing connections to inputs or outputs are "sinking" and "sourcing". These two concepts are very important in connecting a PLC correctly with external environment. The most brief definition of these two concepts would be:

SINKING = Common GND line (-)
SOURCING = Common VCC line (+)

First thing that catches one's eye are "+" and "-" supply, DC supply. Inputs and outputs which are either sinking or sourcing can conduct electricity only in one direction, so they are only supplied with direct current.


According to what we've said thus far, each input or output has its own return line, so 5 inputs would need 10 screw terminals on PLC controller housing. Instead, we use a system of connecting several inputs to one return line as in the following picture. These common lines are usually marked "COMM" on the PLC controller housing.

PLC Controller Inputs


Intelligence of an automated system depends largely on the ability of a PLC controller to read signals from different types of sensors and input devices. Keys, keyboards and by functional switches are a basis for man versus machine relationship. On the other hand, in order to detect a working piece, view a mechanism in motion, check pressure or fluid level you need specific automatic devices such as proximity sensors, marginal switches, photoelectric sensors, level sensors, etc. Thus, input signals can be logical (on/off) or analogue. Smaller PLC controllers usually have only digital input lines while larger also accept analogue inputs through special units attached to PLC controller.

One of the most frequent analogue signals are a current signal of 4 to 20 mA and milivolt voltage signal generated by various sensors. Sensors are usually used as inputs for PLCs. You can obtain sensors for different purposes. They can sense presence of some parts, measure temperature, pressure, or some other physical dimension, etc. (ex. inductive sensors can register metal objects).

Other devices also can serve as inputs to PLC controller. Intelligent devices such as robots, video systems, etc. often are capable of sending signals to PLC controller input modules (robot, for instance, can send a signal to PLC controller input as information when it has finished moving an object from one place to the other.)

Programming a PLC Controller


PLC controller can be reprogrammed through a computer (usual way), but also through manual programmers (consoles). This practically means that each PLC controller can programmed through a computer if you have the software needed for programming. Today's transmission computers are ideal for reprogramming a PLC controller in factory itself.

This is of great importance to industry. Once the system is corrected, it is also important to read the right program into a PLC again. It is also good to check from time to time whether program in a PLC has not changed. This helps to avoid hazardous situations in factory rooms (some automakers have established communication networks which regularly check programs in PLC controllers to ensure execution only of good programs).

Almost every program for programming a PLC controller possesses various useful options such as: forced switching on and off of the system inputs/ouputs (I/O lines), program follow up in real time as well as documenting a diagram. This documenting is necessary to understand and define failures and malfunctions. Programmer can add remarks, names of input or output devices, and comments that can be useful when finding errors, or with system maintenance. Adding comments and remarks enables any technician (and not just a person who developed the system) to understand a ladder diagram right away.

Comments and remarks can even quote precisely part numbers if replacements would be needed. This would speed up a repair of any problems that come up due to bad parts. The old way was such that a person who developed a system had protection on the program, so nobody aside from this person could understand how it was done. Correctly documented ladder diagram allows any technician to understand thoroughly how system functions.

Power Supply of PLC

Monday, January 11, 2010


Electrical supply is used in bringing electrical energy to central processing unit. Most PLC controllers work either at 24 VDC or 220 VAC. On some PLC controllers you'll find electrical supply as a separate module. Those are usually bigger PLC controllers, while small and medium series already contain the supply module.

User has to determine how much current to take from I/O module to ensure that electrical supply provides appropriate amount of current. Different types of modules use different amounts of electrical current.

This electrical supply is usually not used to start external inputs or outputs. User has to provide separate supplies in starting PLC controller inputs or outputs because then you can ensure so called "pure" supply for the PLC controller.

With pure supply we mean supply where industrial environment can not affect it damagingly. Some of the smaller PLC controllers supply their inputs with voltage from a small supply source already incorporated into a PLC.

Memory of PLC


System memory (today mostly implemented in FLASH technology) is used by a PLC for an process control system. Aside from this operating system it also contains a user program translated from a ladder diagram to a binary form. FLASH memory contents can be changed only in case where user program is being changed.

PLC controllers were used earlier instead of FLASH memory and have had EPROM memory instead of FLASH memory which had to be erased with UV lamp and programmed on programmers. With the use of FLASH technology this process was greatly shortened. Reprogramming a program memory is done through a serial cable in a program for application development.

User memory is divided into blocks having special functions. Some parts of a memory are used for storing input and output status. The real status of an input is stored either as "1" or as "0" in a specific memory bit. Each input or output has one corresponding bit in memory. Other parts of memory are used to store variable contents for variables used in user program. For example, timer value, or counter value would be stored in this part of the memory.

PLC Controller Components


PLC is actually an industrial microcontroller system (in more recent times we meet processors instead of microcontrollers) where you have hardware and software specifically adapted to industrial environment.

Special attention needs to be given to input and output, because in these blocks you find protection needed in isolating a CPU blocks from damaging influences that industrial environment can bring to a CPU via input lines. Program unit is usually a computer used for writing a program (often in ladder diagram).

First Programmable Controllers


"General Motors" is among the first who recognized a need to replace the system's "wired" control board. Increased competition forced auto-makers to improve production quality and productivity. Flexibility and fast and easy change of automated lines of production became crucial! General Motors' idea was to use for system logic one of the microcomputers (these microcomputers were as far as their strength beneath today's eight-bit microcontrollers) instead of wired relays.

Computer could take place of huge, expensive, inflexible wired control boards. If changes were needed in system logic or in order of operations, program in a microcomputer could be changed instead of rewiring of relays. Imagine only what elimination of the entire period needed for changes in wiring meant then. Today, such thinking is but common, and then it was revolutionary!

Everything was well thought out, but then a new problem came up of how to make electricians accept and use a new device. Systems are often quite complex and require complex programming. It was out of question to ask electricians to learn and use computer language in addition to other job duties. General Motors Hidromatic Division of this big company recognized a need and wrote out project criteria for first programmable logic controller ( there were companies which sold instruments that performed industrial control, but those were simple sequential controllers û not PLC controllers as we know them today).

Specifications required that a new device be based on electronic instead of mechanical parts, to have flexibility of a computer, to function in industrial environment (vibrations, heat, dust, etc.) and have a capability of being reprogrammed and used for other tasks. The last criteria was also the most important, and a new device had to be programmed easily and maintained by electricians and technicians. When the specification was done, General Motors looked for interested companies, and encouraged them to develop a device that would meet the specifications for this project.

"Gould Modicon" developed a first device which met these specifications. The key to success with a new device was that for its programming you didn't have to learn a new programming language. It was programmed so that same language ûa ladder diagram, already known to technicians was used. Electricians and technicians could very easily understand these new devices because the logic looked similar to old logic that they were used to working with. Thus they didn't have to learn a new programming language which (obviously) proved to be a good move.

PLC controllers were initially called PC controllers (programmable controllers). This caused a small confusion when Personal Computers appeared. To avoid confusion, a designation PC was left to computers, and programmable controllers became programmable logic controllers. First PLC controllers were simple devices. They connected inputs such as switches, digital sensors, etc., and based on internal logic they turned output devices on or off. When they first came up, they were not quite suitable for complicated controls such as temperature, position, pressure, etc. However, throughout years, makers of PLC controllers added numerous features and improvements. Today's PLC controller can handle highly complex tasks such as position control, various regulations and other complex applications. The speed of work and easiness of programming were also improved. Also, modules for special purposes were developed, like communication modules for connecting several PLC controllers to the net. Today it is difficult to imagine a task that could not be handled by a PLC.

PLC System

Sunday, January 10, 2010

A process control system is made up of a group of electronic devices that provide stability, accuracy and eliminate harmful transition statuses in production processes. Operating systems can have different arrangements and implementation, from energy supply units to machines. As technology quickly progresses, many complex operational tasks have been solved by connecting programmable logic controllers and a central computer.


Beside connections with devices (e.g., operating panels, motors, sensors, switches, valves, etc.) possibilities for communication among instruments are so great that they allow a high level of exploitation and process coordination. In addition, there is greater flexibility in realizing a process control system. Each component of a process control system plays an important role, regardless of its size. For example, without a sensor, the PLC wouldn't know what is going on during a process. In an automated system, a PLC controller is usually the central part of a process control system.

With the execution of a program stored in program memory, PLC continuously monitors status of the system through signals from input devices. Based on the logic implemented in the program, PLC determines which actions need to be executed with output instruments. To run more complex processes it is possible to connect more PLC controllers to a central computer.

History of PLC


The first introduction of PLC is in 1960. PLC has built for decrease lost pay for changing the control system that using relay. MODICON (Modular Digital Controller) 084 is the first PLC for commercial.

Based on increasing necessity in production processing is causing the system must changing in some period. If the system that used is mechanic relay, it will make big problem. In 1970, the great of PLC technology is sequencer and CPU using bit-slice.

Introduction of PLC (Programmable Logic Control)


In industrial world, increasing quality and productivity from product result has needed to control process of industrial machines and monitoring the machine process. General, controlling the machine is setting up by some group electronics devices and preventing transition at production processing.

In last year, automatic industry has only using electronic board as control system. This board is needed many interconnection between relay to make the system can work. In other word, for this connection has many cables for connect each other relay. Relay that using in this connection is hundreds and called Ladder Schematic.

Ladder schematic is displaying the switch, sensor, motor, and relay. All devices is connection as one wiring. The problems for this wiring, if one of the relay has broken, so the process production will be stopped automatically. The solution for this problems is using a electronics devices that is called as Programmable Logic Control or PLC unit.

 
 
 
Powered By Blogger
 
Copyright © PLC Projects